OSCILLATORY BEHAVIOR OF THIRD ORDER NONLINEAR NEUTRAL DIFFERENTIAL EQUATIONS
نویسندگان
چکیده
منابع مشابه
Oscillatory Behavior of Second Order Neutral Differential Equations
Oscillation criteria are obtained for solutions of forced and unforced second order neutral differential equations with positive and negative coefficients. These criteria generalize those of Manojlović, Shoukaku, Tanigawa and Yoshida (2006).
متن کاملOn Oscillatory Nonlinear Second Order Neutral Delay Differential Equations
In this work, we investigate the oscillation criteria for second order neutral delay differential equations of the form (r(t)[y(t)+ p(t)y(δ (t))]′)′ +q(t)G(y(τ(t))) = 0 and (r(t)[[y(t)+ p(t)y(δ (t))]′]α )′ +q(t)(yβ (τ(t))) = 0, where α and β are the ratio of odd positive integers. Mathematics subject classification (2010): 34C10, 34C15.
متن کاملOscillatory and Asymptotic Behavior of Third-order Neutral Differential Equations with Distributed Deviating Arguments
This article concerns the oscillatory and asymptotic properties of solutions of a class of third-order neutral differential equations with distributed deviating arguments. We give sufficient conditions for every solution to be either oscillatory or to converges to zero. The results obtained can easily be extended to more general neutral differential equations and neutral dynamic equations on ti...
متن کاملOscillation of third-order nonlinear neutral differential equations
With the development of modern society, research on properties of ordinary differential equation is becoming one of the hotspots in mathematical field. Neutral differential equation which is usually generated in natural science and engineering field is always extensively concerned by many scientific researchers for it can effectively describe multiple complex phenomena in natural world. In rece...
متن کاملOscillatory behavior of second order nonlinear neutral differential equations with distributed deviating arguments
(H) I := [t,∞), r,p ∈ C(I,R), r(t) > , and p(t)≥ ; (H) q ∈ C(I× [a,b], [,∞)) and q(t, ξ ) is not eventually zero on any [tμ,∞)× [a,b], tμ ∈ I; (H) g ∈ C(I× [a,b], [,∞)), lim inft→∞ g(t, ξ ) =∞, and g(t,a)≤ g(t, ξ ) for ξ ∈ [a,b]; (H) τ ∈ C(I,R), τ ′(t) > , limt→∞ τ (t) =∞, and g(τ (t), ξ ) = τ [g(t, ξ )]; (H) σ ∈ C([a,b],R) is nondecreasing and the integral of (.) is taken in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2014
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v94i1.6